US009229865B2

a2 United States Patent

Solihin

US 9,229,865 B2
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

(58)

ONE-CACHEABLE MULTI-CORE
ARCHITECTURE

Applicant: EMPIRE TECHNOLOGY
DEVELOPMENT LLC, Wilmington,

DE (US)

Inventor: Yan Solihin, Raleigh, NC (US)

Assignee: Empire Technology Development LL.C,

Wilmington, DE (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 195 days.
Appl. No.: 13/982,620
PCT Filed: Feb. 21, 2013

PCT No.:

§371 (o)D),
(2) Date:

PCT/US2013/027118

Jul. 30, 2013

PCT Pub. No.: 'WO02014/130037
PCT Pub. Date: Aug. 28, 2014

Prior Publication Data

US 2014/0237185 A1 Aug. 21,2014

Int. Cl.

GO6F 12/08 (2006.01)

GO6F 12/10 (2006.01)

U.S. CL

CPC ... GO6F 12/0811 (2013.01); GOGF 12/084

(2013.01); GO6F 12/0815 (2013.01); GO6F
12/1027 (2013.01)
Field of Classification Search
CPC GOGF 12/1027
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,631,447 B1* 10/2003 Moriokaetal. 711/141
2006/0112227 Al* 5/2006 Hadyetal. 711/130
2007/0239938 Al* 10/2007 Pong L7122
2010/0257320 Al* 10/2010 Bassetal. 711/136
2010/0262973 Al* 10/2010 Ernstetal. 718/104
2010/0332763 Al* 12/2010 Kornegay et al. .. 711/130
2011/0161346 Al* 6/2011 Solihin 707/769
2011/0320415 Al* 12/2011 Berger et al. ... 707/692
2012/0137079 Al* 52012 Ueda ...ccocovvvvecrrernne 711/141

OTHER PUBLICATIONS

S. Borkar and A. A. Chien, “The Future of Microprocessors”, Com-
munications of the ACM, May 2011, pp. 67-77, vol. 54, No. 5.

(Continued)

Primary Examiner — Idriss N Alrobaye

Assistant Examiner — Ronald Mood

(74) Attorney, Agent, or Firm — Moritt Hock & Hamroff
LLP; Steve S. Rubin, Esq.

(57) ABSTRACT

Technologies are generally described for methods, systems,
and devices effective to implement one-cacheable multi-core
architectures. In one example, a multi-core processor that
includes a first and second tile may be configured to imple-
ment a one-cacheable architecture. The second tile may be
configured to generate a request for a data block. The first tile
may be configured to receive the request for the data block,
and determine that the requested data block is part of a group
of data blocks identified as one-cacheable. The first tile may
further determine that the requested data block is stored in a
first cache in the firsttile. The first tile may send the data block
from the first cache in the first tile to the second tile, and
invalidate the data blocks of the group of data blocks in the
first cache in the first tile.

35 Claims, 7 Drawing Sheets

140 s
et w2 42 100 108
\ ~ LA \
) X \\
o6 ﬂ 12 @ 150
1122 324 168 ENrr'd \ 7 || 3 N / 3
[[Nt ||[Yo be [[Sawbuwe| [Teg Data [Tag N~ Atribute ||[Tag Defs
IEHEERIES ™ Joc P o |[Fm
L. 9
Kc P1.C
PS.E (QC) Cache B
controller 162
"
176, Reply ~178
I_'—_‘/ % Read P1.4 (OC) y
152
[Memory controller ~1ss
Memory 180 182
154 Page [Teg’ | Awibum

156/‘

teble

US 9,229,865 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

Hou, R. et al., “Efficient Data Streaming with On-chip Accelerators:
Opportunities and Challenges”, Proc. of the International Sympo-
sium on High-Performance Computer Architecture, Feb. 2011, 9
pages.

Hackenberg D. et al., “Comparing Cache Architectures and Coher-
ency Protocols on x86-64 Multicore SMP Systems”, MICRO’09,
Dec. 12-16, 2009, pp. 413-422.

Kelm, J.H. et al., “A Task-centric Memory Model for Scalable Accel-
erator Architectures”, Micro, IEEE, Mar. 2010, 11 pages, vol. 30,
Issue: 1.

Kelm, J.H. et al., Cohesion: An Adaptive Hybrid Memory Model for
Accelerators, IEEE Computer Society, 2011, p. 42-55.

Li, K, & P. Hudak, “Memory Coherence in Shared Virtual Memory
Systems”, ACM Transactions on Computer Systems, Nov. 1989, pp.
321-359, vol. 7, No. 4.

Jin, L. et al., “A Flexible Data to L2 Cache Mapping Approach for
Future Multicore Processors”, MSPC *06, Oct. 2006, 10 pages.
International Search Report and Written Opinion for PCT application
with application No. PCT/US2013/027118, dated May 17, 2013, 9

pages.

* cited by examiner

U.S. Patent Jan. 5,2016 Sheet 1 of 7 US 9,229,865 B2

144
130, 132 /
AN
Tagh |\ Attribute
P1 oc

o
h
N :
- £ /
2
= Q
~l°]
E’E - —

N Attribute
oc

Tag
P1

US 9,229,865 B2

Sheet 2 of 7

Jan. 5§, 2016

U.S. Patent

acl
|\
Sile]=}
SInqLY Be afe ¥Sl
7 \ L d \
a1 081 Aowsy
56l zsl
~ 19]|0J1U0D AJOWS| _ N
J9|lou0d | -9 19][01U0D Jajjonuoo
Jayng
ayoed | ool Swea |
_ _ G1
wumn_ ,Bey || [omamy \ /m/ﬁ eed ERNEENE Eled Bey || [@naumv] pey
Z f 4 Z Z /
4 / ecl / hY 7
e [ol oL || 2 oL A By o o / T
051 Qct ZLL 8Ll oLl
/ ARSI AN N :
A)
N — X AN < Y
il 8ot OL e ok 0l

901

US 9,229,865 B2

Sheet 3 of 7

Jan. 5, 2016

U.S. Patent

anqLyy be|

Z r

8[qe)
abey

7 7

Gl
\coEm_\/_.\

sk~ 139]|10J3u02 AIowia _ N\ﬁ
20) v'Ld pesy
(ot
\\b§ ™,
A
19]|0J3U02 \ 291 19]|0QU09 viL | ellonuos 8G1
Jaung Y ayoen {00) 3°6d WM SUIED
[
alqeL
36d 161
'ld
V'Sd
00 d 00 Gd vid 00 Id
wﬁo ; ey || [onamy N /m/ﬂ g 6ol SnquIvy | fel =20 pel || [@namv| pey
A g 7 N 7 7 \
e \ VL .y ST o | A % _ A
oSl AR 2 o/l
oLl
/ \ N\, N
AN ~ S - N
—_— -
80} zrl zol vol
AT " 00l . owl

US 9,229,865 B2

Sheet 4 of 7

Jan. 5, 2016

U.S. Patent

T\@Q .V . m_H_

3|ge] vol
anamy_| pey | obed ||~
7
7 7
zol 08l >._Orc®_>_
s~ 19]|01U0D AIOWB | o
I
/|
(01 d 'v'id) oo 06V
0u1— Aidey (00) v'Ld P, ™
T 4
091 N D)
J3]|0BU0D <9l J8]j0Ju02 Al
il 18]j04U0D
155ng syd%eg (00) 3'5d SWM—<—— ol sipery |8
ﬁ _ 151
slqeL
E): 4 I
.4
vl
[vid | 2 | 14 20 | gq v 0 | (g
2eq ,Bel ||| BnauRY | |\ Bey eleq ,Bel NGV | fel BeQ Be| anaunv \ | Bey
- i N/m_./ ~ 7 N\ \\ ~ AN
£L) \ b ozl o€l B4 01 / R 89} mm“ A
oGl AN (g4 o/l
oLl
/ \ \ N

U.S. Patent Jan. 5,2016 Sheet 5 of 7 US 9,229,865 B2

S2
Receive the request for the data block at a first tile that includes a first core and a first cache,
wherein the request is received from a sccond tile that includes a sccond processor

4
S4
Determine, by the first tile, that the data block is part of a group of data blocks
56 Determine, by the first tile, that the one or more data blocks of the group are stored in the
first cache in the first tile
S8

Send, by the first tile, the data block from the first cache in the first tile to the second tile

4
S10 | Invalidate, by the first tile, each block in the one or more data blocks of the group of data

blocks that are stored in the first cache in the first tile

US 9,229,865 B2

Sheet 6 of 7

Jan. 5, 2016

U.S. Patent

_. ||||||||||||||||| |

_ wnipsw " | wnipaw _ “ wnipaw ajgepesl |
SUOIIBIUNWILIOD a|qepiodal ¥ —— _
STy DIy | MY ggy POV g

*O[T} 1STTJ OTL UT OIED 1SITJ I} UT PITO)S OIL 18T}

$y00[q elep JO dnoId o1} JO SIYOO[Qq BIEP 2IOW IO SUO [} UT J[O0[q [Ord ‘d[1) 1SMJ o) Aq “SUT)EPI[EAUL 10 SUOTIONIISTI IO IO ()
JO £9[T) PUOO3S 911 01 AT} ISIJ) UT YO ISITJ 3} WOIJ YO0[(BILP 2} ‘O[T ISIJ o) 4G ‘FUIPUDS JOJ SUONONNSUT IOUW IO U()

10 2711 1SI17 O}

UT OTOBS 1STTJ 2T} UT Pa10)s are dnord 21 JO SYI0[q Bjep 210U JO U0 Jet} ‘a[1l ST o1} Aq ‘FUIHTULRIOP J0J STOTIONIISUT 2I0UT 1O JU()
10 s3190[q BIEp JO dnoI3 € Jo 1red S1)00[q B1ep 23Ul 1By D1 1511 O} AQ ‘TUIUIIUIDIOP JOJ SUOHOTISUL 2I0W JO dU()

10 £10859001d PIONas B SOPNIIUL BT} 21 PUOODS B WO PIATAAI ST 15a1DaI 91} WAISYM

‘OT[OBO JSITJ & PUL DI0J JSIIJ & SOPT[OUT JLT} O[TL ISITJ B & YOO[q BJEp 97} I0J 15onbar o1 SUIATI03I 0] SUOTONIISUT SIOUI IO dU()

10 £708$3001d 2100-)TNTU © UL JOO[q BjeP € 10] 15anba1 & Fu1ssao0id 10] pOYIRU € JO] SUOLONISUT JIOW IO ()

JO oUO 158 1Y

¥0€

‘wnipsw Bulesq [eubis v Zog

onpoJd wesboud Jeindwod v §oE

US 9,229,865 B2

Sheet 7 of 7

Jan. 5, 2016

U.S. Patent

(zov)
(s)aoinag

~

ONILNdWNOD |y

HAHLO

(

(¥or) (09%)
s)Hod nnv "3TI0HLNOD
WNOD MHOMLIN

Qumvv SNg FOV4HILN| IOVHOLS
- ~ P ~y = ~
(0ew) (aaH “69) (anarao “69)
dITI0UINOD (8c¥) 3oVHOLS (9¢p) F9VHOLS

Jov4daLN/SNg

J1aVAONTY-NON

J1aVAONTY

>

(9g+)
Anv Y3TIOMLNOD
3OV4HTIN|
(9Gh) RERRIA|
(s)Lyod
el (¥S+)
Auv 43TI0HLNOD
JOVAHILNI
viNag

(PP SIOVAEIIN] TvaIHAINId

(0s¥) LINO

n v ONISS3004dd

olany
(zap)

(s)1¥0d

-

(8tv) LNN

AHV ONISS3004dd

SOIHAVID

(Ovp) sng Fov4MaLN|

AL L e

A (g0o¥)

<

—/
sng AHOWIW
/]

- 7

HITIOHLNCD AHOWIN

(81¥)

(8zp)
vivq
JHNLDILIHOYY
37avIHOVO-IND

1L

Sy

(91%)

3181939

dsa
340D

(FL¥)
iNd4/N1v
HOSS300dd

(9z¥)
WHLIHOOTY
JHNLOILIHOHY
379vIHOVO-INO

L)
IHOVD
2 13A37

(0L¥)

¢c¥) NOILLYOllddyY

IHOVD

| 13A37

dsa/ omjan

WILSAS ONILYHIdO

(0zt)

(F0F) Hos5T008d

WYH/NOY

US 9,229,865 B2

1
ONE-CACHEABLE MULTI-CORE
ARCHITECTURE

CROSS REFERENCE TO RELATED
APPLICATIONS APPLICATION

This application is a U.S. national stage filing under 35
U.S.C. 371 of International Application No. PCT/US2013/
027118 filed Feb. 21, 2013. The disclosure of the Interna-
tional Application is hereby incorporated herein by reference
in its entirety.

BACKGROUND

Unless otherwise indicated herein, the materials described
in this section are not prior art to the claims in this application
and are not admitted to be prior art by inclusion in this section.

In multi-core architectures, multiple processor cores may
be included in a single integrated circuit die or on multiple
integrated circuit dies that are arranged in a single chip pack-
age. A cache may be used to store data for access by one or
more of the processor cores. Resources in the die may be
distributed across two or more tiles. Such resources may
include, for example, a directory configured to maintain
coherence for the caches, memory controllers, processor
cores, caches, etc.

SUMMARY

In some examples, methods for processing a request for a
data block in a multi-core processor are generally described.
Some methods include receiving the request for the data
block at a first tile that includes a first core and a first cache.
The request may be received from a second tile that includes
a second processor. Some methods include determining, by
the first tile, that the data block is part of a group of data
blocks. Some methods include determining, by the first tile
that one or more data blocks of the group are stored in the first
cache in the first tile. Some methods further include sending,
by the first tile the data block from the first cache in the first
tile to the second tile. Some methods include invalidating, by
the first tile, each block in the one or more data blocks of the
group of data blocks that are stored in the first cache in the first
tile.

In some examples, tiles configured to process a request for
adatablock in a multi-core processor are generally described.
A first tile may include a first cache, a first core, and a con-
troller configured in communication with the first cache. The
controller may be configured to receive the request for the
data block. The request may be received from a second tile
comprising a second cache and a second core. The controller
may be configured to determine that the data block is part of
a group of data blocks. The controller may be configured to
determine that the group is stored in one cache in the proces-
sor. The controller may be configured to determine that the
group is stored in the first cache in the first tile. The controller
may be configured to send the data block from the first cache
in the first tile to the second tile. The controller may be
configured to invalidate the group of data blocks in the first
cache in the first tile.

In some examples, multi-core processors configured to
process arequest for a data block are generally described. The
processors may include a first tile and a second tile configured
in communication with the first tile. The first tile may include
a first cache and a first controller configured in communica-
tion with the first cache. The second tile may be configured to
generate the request for the data block, and send the request

10

15

20

25

30

35

40

45

50

55

60

65

2

for the data block to the first tile. The first tile may be config-
ured to receive the request for the data block. The first tile may
be configured to determine that the data block is part of a
group of data blocks. The first tile may be configured to
determine that one or more data blocks of the group are stored
in the first cache in the processor. The first tile may be con-
figured to send the data block from the first cache in the first
tile to the second tile. The first tile may be configured to
invalidate each block in the one or more data blocks of the
group of data blocks that are stored in the first cache in the first
tile.

In some examples, multi-core processors configured to
process arequest for a data block are generally described. The
multi-core processors may include a first tile in a die, a second
tile in the die and a memory. The first tile may include a first
cache and a first controller configured in communication with
the first cache. The second tile may be configured in commu-
nication with the first tile. The memory may be configured in
communication with the first and the second tile. The first tile
may be configured to generate the request for the data block.
The first tile may be configured to determine that the data
block is part of a group of data blocks that is stored exclu-
sively in one cache in the multi-core processor. The first tile
may be configured to determine that the data block is not
stored in the first cache. The first tile may be configured to
determine that another block in the group is stored in the first
cache. The first tile may be configured to, in response to the
determination that the data block is not stored in the first
cache and the determination that another block in the group is
stored in the first cache, send the request to the memory.

In some examples, multi-core processors configured to
process arequest for a data block are generally described. The
multi-core processors may include a first tile, a second tile
and a memory. The first tile may include a first cache and a
first controller configured in communication with the first
cache. The second tile may be configured in communication
with the first tile. The memory may be configured in commu-
nication with the first and the second tile. The first tile may be
configured to generate a request to initialize a value of the data
block. The first tile may be configured to determine that the
data block is part of a group of data blocks that is stored
exclusively in one cache in the multi-core processor. The first
tile may be configured to determine that a block in the group
is stored in the first cache. The first tile may be configured to,
in response to the determination that a block in the group is
stored in the first cache, store the data block in the first cache
and initialize the data block to the value.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other features of this disclosure will
become more fully apparent from the following description
and appended claims, taken in conjunction with the accom-
panying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings, in
which:

FIG. 1 illustrates an example system that can be utilized to
implement a one-cacheable multi-core architecture;

US 9,229,865 B2

3

FIG. 2 illustrates an example system that can be utilized to
implement a one-cacheable multi-core architecture;

FIG. 3 illustrates an example system that can be utilized to
implement a one-cacheable multi-core architecture;

FIG. 4 illustrates an example system that can be utilized to
implement a one-cacheable multi-core architecture;

FIG. 5 depicts a flow diagram for an example process for
implementing a one-cacheable multi-core architecture;

FIG. 6 illustrates a computer program product that can be
utilized to implement a one-cacheable multi-core architec-
ture; and

FIG. 7 is a block diagram illustrating an example comput-
ing device that is arranged to implement a one-cacheable
multi-core architecture,

all arranged according to at least some embodiments
described herein.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In the
drawings, similar symbols typically identify similar compo-
nents, unless context dictates otherwise. The illustrative
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the subject matter pre-
sented herein. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the Figures, can be arranged, substituted, com-
bined, separated, and designed in a wide variety of different
configurations, all of which are explicitly contemplated
herein.

This disclosure is generally drawn, inter alia, to methods,
apparatus, systems, devices, and computer program products
related to one-cacheable multi-core architectures.

Briefly stated, technologies are generally described for
methods, systems, and devices effective to implement one-
cacheable multi-core architectures. In one example, a multi-
core processor that includes a first and second tile may be
configured to implement a one-cacheable architecture. The
second tile may be configured to generate a request for a data
block. The first tile may be configured to receive the request
for the data block, and determine that the requested data block
is part of a group of data blocks identified as one-cacheable.
The first tile may further determine that the requested data
block is stored in a first cache in the first tile. The first tile may
send the data block from the first cache in the first tile to the
second tile, and invalidate the data blocks of the group of data
blocks in the first cache in the first tile.

As discussed in more detail below, a system may imple-
ment a one-cacheable architecture relating to storage of
groups of data blocks. An accelerator and a processor core
may synchronize and communicate at task boundaries. For
example, a processor core may invoke an accelerator for a
processing task. The accelerator may access one or more data
blocks while executing the task. Coherence for the data
blocks may be simplified and may be made more efficient
through implementation of a one-cacheable architecture
described and explained herein.

FIG. 1 illustrates an example system that can be utilized to
implement one-cacheable multi-core architectures arranged
in accordance with at least some embodiments described
herein. An example system 100 may include a multi-core
processor 102 including two or more tiles 140, 142, and/or
144. Tiles 140, 142, 144 may be configured in communication
through a bus 152. Tile 140 may include a processor core 104

20

30

40

45

50

60

4

and/or a cache 110. Tile 142 may similarly include a proces-
sor core 106 and/or a cache 112. Tile 144 may include an
accelerator or a special purpose core 108 and a buffer 150.
Accelerator 108 may be, for example, a processor core con-
figured for a particular operation such as a compression
engine, cryptographic engine, XML (extensible markup lan-
guage) engine, regular expression engine, packet processing
engine, graphics processing unit, etc. Tiles 140, 142 and 144
may each be associated with a respective one of translation
lookaside buffers 116, 118 and 120. Each of the translation
lookaside buffers may be configured to store information that
is organized according to fields, such as a tag field and an
attribute field. For example, translation lookaside buffer 116
may store information in a tag field 122 and an attribute field
124; translation lookaside buffer 118 may store information
in a tag field 126 and an attribute field 128; and translation
lookaside buffer 120 may store information in a tag field 130
and an attribute field 132.

The data in tag fields 122, 126, 130 may identify respective
groups of data blocks. The data in attribute fields 124, 128,
132 may identify a one-cacheable attribute to indicate that a
block from the group of data blocks, identified by the corre-
sponding tag field, may be stored in one tile. In some addi-
tional examples, the block may be stored exclusively in one
tile. Such an attribute may simplify cache coherence for the
corresponding group of data blocks. In still other examples, a
coherence region can be defined by a subset of the tiles that
form a virtual machine, where the block may be stored exclu-
sively, for the region, in one tile. A one-cacheable attribute
may further specify the cache hierarchy level for which the
attribute applies, for example whether the one-cacheable
attribute applies to the .2 cache, the L3 cache, etc.

FIG. 2 illustrates an example system that can be utilized to
implement one-cacheable multi-core architectures arranged
in accordance with at least some embodiments described
herein. Those components in FIG. 2 that are labeled identi-
cally to components of FIG. 1 will not be described again for
the purposes of clarity.

Multi-core processor 102 may be configured to execute
instructions. Such instructions may be utilized to control
storage and processing of data in multi-core processor 102.
For example, instructions may configure multi-core proces-
sor 102 to set a value in one or more of attribute fields 124,
128,132, each corresponding to one of the tag fields 122, 126,
130. A value in the attribute field may indicate how a corre-
sponding group of data blocks, such as a page, may be cached.
For example, a value in attribute field 124, 128, 132 may
indicate that a page is “cacheable”, “non-cacheable” or “one-
cacheable”. An attribute of “cacheable” may indicate that a
block from the group of data blocks may be cached in one or
more tiles in multi-core processor 102. An attribute of “non-
cacheable” may indicate that a block from the group of data
blocks may not be cached in the processor. An attribute of
“one-cacheable” may indicate that one or more blocks from
the group of data blocks may be stored in one tile in the
processor (e.g., exclusive for a defined coherence region,
exclusive to all tiles, etc.). A program may declare whether a
group of data blocks, or a page, is one-cacheable—such as
through use of a programming language construct, a pro-
gramming language extension, a programming language
directive, or an application programming interface. A library,
such as a library using an accelerator, may have an entry that,
when processed, may cause a determination that a group of
data blocks is one-cacheable. In an example, the library may
include an entry that identifies blocks in a page as one-cache-
able.

US 9,229,865 B2

5

Tile 144 with accelerator 108 may include a buffer 150.
Accelerator 108 may be configured in communication with
one or more cache controllers 158, 160 (described below)
through bus or communication link 152. A main memory 154
may be external to and configured in communication with
multi-core processor 102. Data stored in main memory 154
may include a page table 156 that includes a tag field 180 and
attribute field 182. A memory controller 155 in multi-core
processor 102 may facilitate movement of data to and from
main memory 154. Values stored in page table 156 may
identify a list of pages stored in caches in multi-core proces-
sor 102. Page table 156 may also store indications as to how
each ofthe pages may be cached. For example, page table 156
may include fields indicating whether the respective page is
cacheable, non-cacheable, or one-cacheable.

Caches 110, 112 may be coupled to a respective one of
cache controllers 158, 160; where the cache controllers 158,
160 are operable to control movement of data into and out of
caches 110, 112. Accelerator 108 may include a buffer con-
troller 162; where the buffer controller 162 is operable to
control movement of data into and out of buffer 150. Cache
110 may be configured to store information in a cache tag
field 166 and/or a data field 168. Cache 112 may include a
cache tag field 170 and/or a data field 172. Buffer 150 may
include information in a buffer tag field 171 and/or a data field
173. In some examples, buffer 150 may not include a buffer
tag field 171. In another example, buffer 150 may be a hard-
ware-managed cache, a hardware-managed prefetching
buffer, a software-managed buffer, or a software-managed
cache. Data fields 168, 172, 173 may be operable to store data
for data blocks identified in a corresponding one of cache or
buffer tag fields 166, 170, 171.

FIG. 3 illustrates an example system that can be utilized to
implement one-cacheable multi-core architectures in accor-
dance with at least some embodiments described herein.
Those components in FIG. 3 that are labeled identically to
components of FIG. 1 or 2 will not be described again for the
purposes of clarity.

Multi-core processor 102 may be configured to keep track
of' whether a block belongs to a group of data blocks (such as
a page) that is indicated as one-cacheable. In one example,
cache 110 may be utilized to maintain a table 157. Values
stored in table 157 may indicate pages that are one-cacheable
for which one or more blocks are stored in a respective cache.
Table 157 may be indexed using a physical address of a block
or a page, and may contain a bitmap that indicates which
blocks in a page are currently cached. As blocks from one or
more pages can be stored in cache 110, cache controller 158
may update values in table 157 accordingly. As blocks are
evicted from cache 110, cache controller 158 may update
values in table 157 to reflect the evicted blocks. This example,
using table 157, may have relatively greater complexity in
implementation, than without table 157. The greater com-
plexity may be because the table should track all one-cache-
able pages correctly, the table should be addressable by physi-
cal address, and the table should be kept coherent against
translation lookaside buffers.

In another example, where table 157 is not included, as
cores 104, 106 or accelerator 108 initiate requests (e.g., read
or write requests) for data stored in a cache, the requests may
include an indication as to whether a page is cached as one-
cacheable. A core (such as through a cache controller) or an
accelerator (such as through a buffer controller) may initiate
a request for data stored in the cache of another core. Such a
request may be generated when a core or accelerator imitates
arequest to read from, or write data to, a particular data block.
In response to a request to read from, or write to, at least one

15

40

45

6

data block of a one-cacheable group of data blocks, a cache
controller may invalidate other blocks from the group of data
blocks that are stored in the corresponding cache.

In the example illustrated in FIG. 3, core 106 may initiate
arequest to write to data block “E” on group or page 5 (“Write
P5.E”). Core 106 may first access translation lookaside buffer
118 to determine whether an indication corresponding to
page 5 is stored in tag field 126 of translation lookaside buffer
118. In examples where an indication corresponding to page
5 is stored in translation lookaside buffer 118, core 106 may
analyze attribute field 128 to determine how page 5 is cached.
In an example, processor 106 may determine that page 5 is
cached as one-cacheable.

In examples where an indication corresponding to page 5 is
not stored in translation lookaside buffer 118, core 106 may
initiate a request to memory 154 requesting the correspond-
ing portion of page table 156 that includes page 5. The cor-
responding portion of page table 156 may then be sent to core
106 in response to the request to memory 154. Cache control-
ler 160 or a memory management unit may then store the
corresponding portion of page table 156 in translation looka-
side buffer 118. In the example, an indication of page P5 may
be stored in translation lookaside buffer 118 with a one-
cacheable attribute (“OC”) in attribute field 128.

After analyzing translation lookaside buffer 118 for page 5,
and perhaps initiating a request to memory 154, cache con-
troller 160 may then initiate a request 174. In the example,
request 174 may be a request to write to block E of page 5.
Request 174 may be initiated by cache controller 160 over a
bus or other interconnect. Request 174 may also include an
indication that page 5 is one-cacheable (“OC”). The indica-
tion of one-cacheable (“OC”) may provide information to tile
140 that page 5 is one-cacheable so that cache controller 158
may enforce the one-cacheable attribute semantic—dis-
cussed in more detail below.

Similarly, in an example, accelerator 108 may initiate a
request to read from data block “A” on page 1 (“Read P1.A”).
Accelerator 108 may first analyze values in the translation
lookaside buffer 120 to determine whether an indication cor-
responding to page 1 is stored in tag field 130 of translation
lookaside buffer 120. In examples where an indication corre-
sponding to page 1 is stored in translation lookaside buffer
120, accelerator 108 may analyze values in the attribute field
132 to determine how page 1 is cached. In examples where an
indication corresponding to page 1 is not stored in translation
lookaside buffer 120, accelerator 108 may initiate a request to
memory 154 for the corresponding portion of page table 156
that includes page 1. The corresponding portion of page table
156 may then be sent to accelerator 108. Buffer controller 162
may then store the corresponding portion of page table 156 in
translation lookaside buffer 120. In the example, an indica-
tion of page P1 may be stored in translation lookaside buffer
118 with a one-cacheable attribute (“OC”).

After analyzing values in the translation lookaside buffer
120 for page 1, buffer controller 162 may then initiate a
request 176. In the example, request 176 can be a request to
read for block A of page 1. Request 176 may be sent from
buffer controller 162 of tile 144 such as over a bus or other
interconnect. Request 176 may include a request to read from
block A of page 1 along with an indication that page 1 is
one-cacheable (“OC”). The indication of one-cacheable
(“OC”) may provide information to tile 140 that page 1 is
one-cacheable so that cache controller 158 may enforce the
one-cacheable attribute semantic.

FIG. 4 illustrates an example system that can be utilized to
implement one-cacheable multi-core architectures arranged
in accordance with at least some embodiments described

US 9,229,865 B2

7

herein. Those components in FIG. 4 that are labeled identi-
cally to components of FIG. 1, 2 or 3 will not be described
again for the purposes of clarity.

In the example described above with reference to FIG. 3,
cache controller 158 may receive a read request 176 for a data
block. In the example, read request 176 can be a request to
read block A of page 1. In responding to read request 176,
cache controller 158 may identify one or more modified or
dirty blocks of data in cache 110 corresponding to page 1.
Such modified or dirty blocks of data may have been modified
after the blocks were retrieved from memory 154 or shared
cache 190. In one example, shared cache 190 may be an L3 or
L4 cache. Cache controller 158 may, before responding to
read request 176, initiate a write back of the modified or dirty
blocks to shared cache 190. For example, if cache 110 corre-
sponds to an 1.2 cache, cache controller 158 may initiate a
write back of the modified blocks to an L3 cache. Shared
cache 190 may be shared by multiple tiles in the multi-core
processor 102.

In further response to read request 176, cache controller
158 may invalidate one or more entries in cache 110 for
blocks corresponding to page 1—as illustrated by the “X”.
Such invalidation may ensure that blocks identified as
belonging to a group of blocks or page that are identified as
one-cacheable are stored (e.g., exclusively for a defined
coherence region, exclusive to all tiles, etc.) in one cache.
Cache controller 158 may then send block A of page 1
through bus or communication link 152. Write requests may
be handled in a manner similar to read requests.

In another example, prior to the invalidation, cache con-
troller 158 may send one or more additional blocks stored in
cache 110 to tile 144. The additional blocks may correspond
to the page identified in read request 176. In the example, read
request 176 can request to read block A of page 1. Cache
controller 158 may send a reply message 178 including addi-
tional blocks of page 1 that are stored in cache 110. In the
example, block A and C of page 1 are stored in cache 110.
Therefore, blocks A and C of page 1 may be sent in reply
message 178 to tile 144. Buffer controller 162 of'tile 144 may
receive blocks A and C in reply message 178 and store blocks
A and C in buffer 150. Buffer controller 162 may fetch addi-
tional blocks in page 1 not supplied in reply message 178
from memory 154.

In some examples, cache controller 158 may be configured
to invalidate blocks in response to read or write requests but
not send reply message 178. Invalidation alone, without reply
message 178 may be beneficial in circumstances where cache
110 is not the lowest level cache—such as when a shared
cache 190 is used. In this example, where cache 110 is not the
lowest level cache, data blocks invalidated from cache 110
may still be fetched from shared cache 190 at a lower level
latency than if cache controller 158 were to fetch the data
from memory 154. In examples where a requesting core is
physically far away, such as may be the case with an accel-
erator, utilizing reply message 178 may be beneficial because
data blocks of a page can be transferred to a requesting core or
accelerator proactively. Such transfer of data blocks may
result in fast and energy efficient operation of the multi-core
processor 102.

In an example, accelerator 108 may make a request to
access a data block P1.B. The access request may result in a
miss in buffer 150. Translation lookaside buffer 120 may
indicate that page P1 is a one-cacheable page. Buffer control-
ler 162 may determine that at least one block in page P1 (P1.A
or P1.C) is currently stored in buffer 150. Due to the property
of one-cacheable page, buffer controller 162 can infer that
none of page P1’s blocks are stored in other caches. Thus,

10

15

20

25

30

35

40

45

50

55

60

65

8

buffer controller 162 can issue a non-coherent memory fetch
directly to memory controller 155. The memory fetch request
may not be broadcasted on bus 152 in a snoopy coherence
protocol, and may not inquire a directory in a directory-based
coherence protocol. Instead, the memory fetch request may
be directly sent to the memory controller, bypassing coher-
ence protocols.

In an example, accelerator 108 may make a request to
access and initialize a data block P1.D with a zero value. The
access request may result in a miss in buffer 150. Translation
lookaside buffer 120 may indicate that page P1 is a one-
cacheable page. Buffer controller 162 may determine that at
least one block in page P1 (P1.A or P1.C) is currently stored
in buffer 150. Due to the property of one-cacheable page,
buffer controller 162 can infer that none of page P1’s blocks
are stored in other caches. Thus, buffer controller 162 can
install a block initialized to zero value directly in the buffer
150. The block installation may not be broadcasted on bus
152 in a snoopy coherence protocol, and may not inquire a
directory in a directory-based coherence protocol. The block
installation bypasses the coherence protocol.

Among other possible benefits, a system configured in
accordance with the present disclosure may be able to sim-
plify cache coherence. In examples where a group of data
blocks or a page is indicated as being one-cacheable, the
system may know that once a first block is found, no other
tiles will cache (e.g., no other tiles within the coherence
region) blocks in the page. Thus, once a first block of a page
is found, processors need not look in other caches. Conse-
quently, blocks may be transferred in bulk. Once a first block
of a one-cacheable page is transferred, other blocks in the
page should also be transferred without requiring a specific
request to transfer the other blocks.

Coherence mechanisms can take advantage of a commu-
nication pattern between accelerators and cores. Accelerators
may access relatively large blocks of data sequentially. For
example, a processor core may process a large block of data,
followed by the accelerator processing the large block of data.
Using one of the disclosed systems, the accelerator may
obtain data from an input stream from one cache used by a
thread where the thread dispatched a task. The accelerator
need not probe other caches. By obtaining data from one
cache, the accelerator or processor core may reduce the num-
ber of cache miss requests and number of coherence mes-
sages, thereby reducing data transfer latency, and improving
performance and energy efficiency.

A one-cacheable attribute may provide for a level of coher-
ence at a granularity level that may be particularly useful for
use in multi-core processors that include an accelerator or a
special purpose core. Validation messages may be sent at task
boundaries resulting in less communication traffic. Synchro-
nization and communication between an accelerator and a
core may be realized. Bulk transfer of data stored in a cache
may be realized because a request for one block may result in
other related blocks being transferred. Bus broadcasting may
be avoided. If a private cache has one block belonging to a
group of blocks or a page identified as one-cacheable, no
blocks from such a group would be available in other private
caches (e.g. other private caches within a defined coherence
region). In response to a miss for a block of the one-cacheable
page, non-coherent requests for the block may be made to a
shared cache or the main memory. By limiting broadcast to
other caches and directing requests to a shared cache or main
memory, lower latency and lower power consumption may be
realized.

In libraries where blocks are zeroed out, when there is a
cache miss in a one-cacheable page where at least one block

US 9,229,865 B2

9

is found in the cache, the cache controller may avoid fetching
further blocks. Any cache misses to other blocks in the group
can be serviced by installing blocks initialized to a zero value.
By directly installing zero valued blocks in the cache, lower
latency, lower bandwidth consumption from coherence traf-
fic, and lower power consumption may be realized.

FIG. 5 depicts a flow diagram for an example process for
implementing one-cacheable multi-core architectures
arranged in accordance with at least some embodiments
described herein. In some examples, the process in FIG. 5§
could be implemented using system 100 discussed above to
process a request for a data block in a multi-core processor.

An example process may include one or more operations,
actions, or functions as illustrated by one or more of blocks
S2, S4, S6, S8 and/or S10. Although illustrated as discrete
blocks, various blocks may be divided into additional blocks,
combined into fewer blocks, or eliminated, depending on the
desired implementation.

Processing may begin at block S2, “Receive the request for
the data block at a first tile that includes a first core and a first
cache, wherein the request is received from a second tile that
includes a second processor.” At block S2, a first tile may
receive a request for a data block. The first tile may include a
first core and a first cache. The request may be received from
a second tile that includes a second core. The request may
include an indication that blocks in the group are stored in one
cache in the processor. The request may be a read, write, or
pre-fetch request.

Processing may continue from block S2 to block S4,
“Determine, by the first tile, that the data block is part of a
group of data blocks.” At block S4, the first tile may determine
that the data block is part of a group of data blocks.

Processing may also continue from block S4 to block S6,
“Determine, by the first tile, that the one or more data blocks
of'the group are stored in the first cache in the first cache in the
first tile.” At block S6, the first tile may determine that the
group of data blocks is stored in one cache in the first tile and
that the group of data blocks is stored in the first cache in the
first tile.

Processing may continue from block S6 to block S8,
“Send, by the first tile, the data block from the first cache in
the first tile to the second tile.” At block S8, the first tile may
send the data block from the first cache in the first tile to the
second tile. The first tile may further send other data blocks of
the group stored in the first cache from the first cache to the
second tile.

Processing may continue from block S8 to block S10,
“Invalidate, by the first tile, each block in the one or more data
blocks of the group of data blocks that are stored in the first
cache in the first tile.”” At block S10, the first tile may invali-
date each block (and write the block back if the block is dirty)
in the one or more data blocks in the first cache in the first tile.
Prior to the invalidation, the first tile may store the data blocks
in a shared cache of the multi-core processor. The first tile
may store a table that identifies the group and indicates that
the group is cacheable in one [.2 cache (e.g., exclusively
within a defined coherence region).

FIG. 6 illustrates an example computer program product
300 that can be utilized to implement a one-cacheable multi-
core architecture arranged in accordance with at least some
embodiments described herein. Program product 300 may
include a signal bearing medium 302. Signal bearing medium
302 may include one or more instructions 304 that, when
executed by, for example, a processor, may provide the func-
tionality described above with respect to FIGS. 1-5. Thus, for
example, referring to system 100, one or more of core 104,
core 106 and/or accelerator 108 in tiles 140, 142, 144 may

20

25

30

40

45

10

undertake one or more of the blocks shown in FIG. 6 in
response to instructions 304 conveyed to the system 100 by
medium 302.

In some implementations, signal bearing medium 302 may
encompass a computer-readable medium 306, such as, but not
limited to, a hard disk drive, a Compact Disc (CD), a Digital
Video Disk (DVD), a digital tape, memory, etc. In some
implementations, signal bearing medium 302 may encom-
pass a recordable medium 308, such as, but not limited to,
memory, read/write (R/W) CDs, R/W DVDs, etc. In some
implementations, signal bearing medium 302 may encom-
pass a communications medium 310, such as, but not limited
to, a digital and/or an analog communication medium (e.g., a
fiber optic cable, a waveguide, a wired communications link,
a wireless communication link, etc.). Thus, for example, pro-
gram product 300 may be conveyed to one or more modules
of the system 100 by an RF signal bearing medium 302,
where the signal bearing medium 302 is conveyed by a wire-
less communications medium 310 (e.g., a wireless commu-
nications medium conforming with the IEEE 802.11 stan-
dard).

FIG. 7 is a block diagram illustrating an example comput-
ing device 400 that is arranged to implement a one-cacheable
multi-core architecture arranged in accordance with at least
some embodiments described herein. In a very basic configu-
ration 402, computing device 400 typically includes one or
more processors 404 and a system memory 406. A memory
bus 408 may be used for communicating between processor
404 and system memory 406.

Depending on the desired configuration, processor 404
may be of any type including but not limited to a micropro-
cessor (UP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. Processor 404 may
include one more levels of caching, such as a level one cache
410 and a level two cache 412, a processor core 414, and
registers 416. An example processor core 414 may include an
arithmetic logic unit (ALU), a floating point unit (FPU), a
digital signal processing core (DSP Core), or any combina-
tion thereof. An example memory controller 418 may also be
used with processor 404, or in some implementations
memory controller 418 may be an internal part of processor
404.

Depending on the desired configuration, system memory
406 may be of any type including but not limited to volatile
memory (such as RAM), non-volatile memory (such as
ROM, flash memory, etc.) or any combination thereof. Sys-
tem memory 406 may include an operating system 420, one
or more applications 422, and program data 424. Application
422 may include a one-cacheable architecture algorithm 426
that is arranged to perform the functions as described herein
including those described with respect to system 100 of FIGS.
1-6. Program data 424 may include one-cacheable architec-
ture data 428 that may be useful to implement a one-cache-
able architecture as is described herein. In some embodi-
ments, application 422 may be arranged to operate with
program data 424 on operating system 420 such that a one-
cacheable architecture may be provided. This described basic
configuration 402 is illustrated in FIG. 7 by those components
within the inner dashed line.

Computing device 400 may have additional features or
functionality, and additional interfaces to facilitate commu-
nications between basic configuration 402 and any required
devices and interfaces. For example, a bus/interface control-
ler 430 may be used to facilitate communications between
basic configuration 402 and one or more data storage devices
432 via a storage interface bus 434. Data storage devices 432
may be removable storage devices 436, non-removable stor-

US 9,229,865 B2

11

age devices 438, or a combination thereof. Examples of
removable storage and non-removable storage devices
include magnetic disk devices such as flexible disk drives and
hard-disk drives (HDD), optical disk drives such as compact
disk (CD) drives or digital versatile disk (DVD) drives, solid
state drives (SSD), and tape drives to name a few. Example
computer storage media may include volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data.

System memory 406, removable storage devices 436 and
non-removable storage devices 438 are examples of com-
puter storage media. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which may be used to store the desired
information and which may be accessed by computing device
400. Any such computer storage media may be part of com-
puting device 400.

Computing device 400 may also include an interface bus
440 for facilitating communication from various interface
devices (e.g., output devices 442, peripheral interfaces 444,
and communication devices 446) to basic configuration 402
via bus/interface controller 430. Example output devices 442
include a graphics processing unit 448 and an audio process-
ing unit 450, which may be configured to communicate to
various external devices such as a display or speakers via one
or more A/V ports 452. Example peripheral interfaces 444
include a serial interface controller 454 or a parallel interface
controller 456, which may be configured to communicate
with external devices such as input devices (e.g., keyboard,
mouse, pen, voice input device, touch input device, etc.) or
other peripheral devices (e.g., printer, scanner, etc.) via one or
more 1/O ports 458. An example communication device 446
includes a network controller 460, which may be arranged to
facilitate communications with one or more other computing
devices 462 over a network communication link via one or
more communication ports 464.

The network communication link may be one example of a
communication media. Communication media may typically
be embodied by computer readable instructions, data struc-
tures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism,
and may include any information delivery media. A “modu-
lated data signal” may be a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media may include wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), microwave,
infrared (IR) and other wireless media. The term computer
readable media as used herein may include both storage
media and communication media.

Computing device 400 may be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a per-
sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com-
puting device 400 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which

10

15

20

25

30

35

40

45

50

55

60

65

12

are intended as illustrations of various aspects. Many modi-
fications and variations can be made without departing from
its spirit and scope, as will be apparent to those skilled in the
art. Functionally equivalent methods and apparatuses within
the scope of the disclosure, in addition to those enumerated
herein, will be apparent to those skilled in the art from the
foregoing descriptions. Such modifications and variations are
intended to fall within the scope of the appended claims. The
present disclosure is to be limited only by the terms of the
appended claims, along with the full scope of equivalents to
which such claims are entitled. It is to be understood that this
disclosure is not limited to particular methods, reagents, com-
pounds compositions or biological systems, which can, of
course, vary. It is also to be understood that the terminology
used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

Itwill be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may containusage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to embodiments containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should be interpreted to mean “at least one” or “one or
more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should be interpreted to mean at least the recited num-
ber (e.g., the bare recitation of “two recitations,” without
other modifiers, means at least two recitations, or two or more
recitations). Furthermore, in those instances where a conven-
tion analogous to “at least one of A, B, and C, etc.” is used, in
general such a construction is intended in the sense one hav-
ing skill in the art would understand the convention (e.g., “a
system having at least one of A, B, and C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). In those instances where a con-
vention analogous to “at least one of A, B, or C, etc.” is used,
in general such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). It will be further understood by
those within the art that virtually any disjunctive word and/or

US 9,229,865 B2

13

phrase presenting two or more alternative terms, whether in
the description, claims, or drawings, should be understood to
contemplate the possibilities of including one of the terms,
either of the terms, or both terms. For example, the phrase “A
or B” will be understood to include the possibilities of “A” or
“B” or “A and B.”

In addition, where features or aspects of the disclosure are
described in terms of Markush groups, those skilled in the art
will recognize that the disclosure is also thereby described in
terms of any individual member or subgroup of members of
the Markush group.

As will be understood by one skilled in the art, for any and
all purposes, such as in terms of providing a written descrip-
tion, all ranges disclosed herein also encompass any and all
possible subranges and combinations of subranges thereof.
Any listed range can be easily recognized as sufficiently
describing and enabling the same range being broken down
into at least equal halves, thirds, quarters, fifths, tenths, etc. As
a non-limiting example, each range discussed herein can be
readily broken down into a lower third, middle third and
upper third, etc. As will also be understood by one skilled in
the art all language such as “up to,” “at least,” “greater than,”
“less than,” and the like include the number recited and refer
to ranges which can be subsequently broken down into sub-
ranges as discussed above. Finally, as will be understood by
one skilled in the art, a range includes each individual mem-
ber. Thus, for example, a group having 1-3 cells refers to
groups having 1, 2, or 3 cells. Similarly, a group having 1-5
cells refers to groups having 1, 2,3, 4, or 5 cells, and so forth.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and embodi-
ments disclosed herein are for purposes of illustration and are
not intended to be limiting, with the true scope and spirit
being indicated by the following claims.

What is claimed is:

1. A method to process a request for a data block in a
multi-core processor, the method comprising:

receiving the request for the data block at a first tile that

includes a first core and a first cache, wherein the request
is received from a second tile that includes a second
core;

determining, by the first tile, that the data block is part of a

group of data blocks;

determining, by the first tile, that one or more data blocks of

the group are stored in the first cache in the first tile;
sending, by the first tile, the data block from the first cache
in the first tile to the second tile; and

in response to sending the data block from the first cache in

the first tile to the second tile, invalidating, by the first
tile, the data block sent from the first tile to the second
tile and each data block in the one or more data blocks of
the group of data blocks that are stored in the first cache
in the first tile.

2. The method of claim 1, further comprising determining,
by the first tile, that the group of data blocks corresponds to a
memory page.

3. The method of claim 1, further comprising sending other
data blocks of the group stored in the first cache from the first
tile to the second tile.

4. The method of claim 1, further comprising sending other
data blocks of the group stored in the first cache from the first
tile to the second tile without receiving an additional request
to send the other data blocks of the group.

5. The method of claim 1, further comprising prior to
invalidating, writing back dirty data blocks to a shared cache
of the multi-core processor.

29 <

10

15

20

25

30

35

40

45

50

55

60

65

14

6. The method of claim 1, wherein receiving the request for
the data block includes receiving the request with an indica-
tion that the data block is cacheable exclusively in one cache
in the processor.

7. The method of claim 1, wherein receiving the request for
the data block includes receiving a request to read the data
block.

8. The method of claim 1, wherein receiving the request for
the data block includes receiving a request to write the data
block.

9. The method of claim 1, wherein receiving the request for
the data block includes receiving a request to read or write the
data block sent over an interconnect of the multi-core proces-
sor.

10. The method of claim 1, further comprising, storing, in
the first tile, a table, wherein the table includes an indication
of the group and indicates that a data block in the group is
cacheable in exclusively one cache in the multi-core proces-
sor.

11. A first tile configured to process a request for a data
block in a multi-core processor, the first tile comprising:

a first cache;

a first core;

a controller configured in communication with the first

cache, wherein the controller is configured to:

receive the request for the data block, wherein the
request is received from a second tile comprising a
second cache and a second core,

determine that the data block is part of a group of data
blocks,

determine that the group is stored in one cache in the
multi-core processor,

determine that the group is stored in the first cache in the
first tile,

send the data block from the first cache in the first tile to
the second tile, and

in response to the data block being sent from the first
cache in the first tile to the second tile, invalidate the
data block sent from the first tile to the second tile and
the group of data blocks in the first cache in the first
tile.

12. The first tile of claim 11, wherein the first core and the
second core both comprise general purpose processor cores.

13. The first tile of claim 11, wherein the first core com-
prises a general purpose processor core and the second core
comprises a special purpose processor core.

14. The first tile of claim 11, wherein the group of data
blocks corresponds to a memory page.

15. The first tile of claim 11, wherein the controller is
further configured to send other data blocks of the group
stored in the first cache from the first tile to the second tile.

16. The first tile of claim 11, wherein the controller is
further configured to send other data blocks of the group
stored in the first cache from the first tile to the second tile
without receipt of an additional request to send the other data
blocks of the group.

17. The first tile of claim 11, wherein the controller is
further configured to, prior to the invalidation, write back
dirty data blocks to a shared cache of the multi-core proces-
sor.

18. The first tile of claim 11, wherein the controller is
further configured to receive the request with an indication
that the data block is cacheable exclusively in one cache in the
multi-core processor.

19. The first tile of claim 11, wherein the controller is
further configured to receive a request to read the data block.

US 9,229,865 B2

15

20. The first tile of claim 11, wherein the controller is
further configured to receive a request to write the data block.
21. A multi-core processor configured to process a request
for a data block, the multi-core processor comprising:
a first tile, wherein the first tile includes a first cache and a
first controller configured in communication with the
first cache; and
a second tile configured in communication with the first
tile,
wherein the second tile is configured to:
generate the request for the data block, and
send the request for the data block to the first tile,
wherein the first tile is configured to:
receive the request for the data block,
determine that the data block is part of a group of data
blocks,

determine that one or more data blocks of the group are
stored in the first cache in the first tile,

send the data block from the first cache in the first tile to
the second tile, and

in response to the data block being sent from the first
cache in the first tile to the second tile, invalidate the
data block sent from the first tile to the second tile and
each data block in the one or more data blocks of the
group of data blocks that are stored in the first cache in
the first tile.

22. The multi-core processor of claim 21, wherein the
group of data blocks corresponds to a memory page.

23. The multi-core processor of claim 21, wherein the first
tile is further configured to send other data blocks of the group
stored in the first cache from the first tile to the second tile.

24. The multi-core processor of claim 21, wherein the first
tile is further configured to send other data blocks of the group
stored in the first cache from the first tile to the second tile
without receipt of an additional request to send the other data
blocks of the group.

25. The multi-core processor of claim 21, wherein the first
tile is further configured to, prior to the invalidation, store the
data block in a shared cache of the multi-core processor.

26. The multi-core processor of claim 21, wherein the first
tile is further configured to receive the request with an indi-
cation that the data block is cacheable exclusively in one
cache in the multi-core processor.

27. The multi-core processor of claim 21, wherein the first
controller is further configured to receive a request to read the
data block.

28. The multi-core processor of claim 21, wherein the first
controller is further configured to receive a request to write
the data block.

29. The multi-core processor of claim 21, wherein the
second tile includes an accelerator.

30. The multi-core processor of claim 21, wherein the
second tile is further configured to, prior to generation of the
request:

send a request to a main memory for a section of a page
table that corresponds to the data block;

receive the section of the page table from the main
memory; and

based on the received section of the page table, determine
that the data block is cacheable exclusively in one tile in
the multi-core processor.

31. The multi-core processor of claim 21, wherein the
second tile is further configured to, prior to generation of the
request, analyze a translation lookaside buffer in the second
tile and determine that the data block is cacheable exclusively
in one cache in the processor.

5

10

15

20

25

30

35

40

45

50

55

60

16

32. The multi-core processor of claim 21, wherein the
second tile is further configured to, prior to generation of the
request:

based on a translation lookaside buffer in the second tile,
determine that an indication corresponding to the data
block is not stored in the translation lookaside buffer;

send a request to a main memory for a section of a page
table that corresponds to the data block;

receive the section of the page table from the main
memory; and

based on the received section of the page table, determine
that the data block is cacheable exclusively in one tile in
the multi-core processor.

33. The multi-core processor of claim 21, wherein:

the first tile is further configured to send one or more reply
messages to the second tile, wherein the one or more
reply messages include other data blocks of the group
stored in the first cache; and

the second tile is further configured to:
determine that a particular block is part of the group but

not in the reply message, and
send a request to a shared cache for the particular block.
34. A multi-core processor configured to process a request
for a data block, the multi-core processor comprising:
afirst tile in a die, wherein the first tile includes a first cache
and a first controller configured in communication with
the first cache;
a second tile in the die and configured in communication
with the first tile; and
a memory configured in communication with the first tile
and the second tile;
wherein the first tile is configured to:
generate the request for the data block;
determine that the data block is part of a group of data
blocks that is stored exclusively in one cache in the
multi-core processor;

determine that the data block is not currently stored in
the first cache;

determine that another data block in the group is cur-
rently stored in the first cache;

in response to the determination that the data block is not
stored in the first cache and the determination that the
another data block in the group is stored in the first
cache, send the request to the memory.
35. A multi-core processor configured to process a request
for a first data block, the multi-core processor comprising:
a first tile, wherein the first tile includes a first cache and a
first controller configured in communication with the
first cache;
a second tile configured in communication with the first
tile; and
a memory configured in communication with the first tile
and the second tile;
wherein the first tile is configured to:
generate a request to initialize a value of the first data
block;

determine that the first data block is part of a group of
data blocks that is stored exclusively in one cache in
the multi-core processor;

determine that the first data block is not currently stored
in the first cache;

determine that a second block in the group is currently
stored in the first cache;

in response to the determination that the second block in
the group is currently stored in the first cache, store

US 9,229,865 B2
17

the first data block in the first cache and initialize the
first data block to the value.

#* #* #* #* #*

18

